Pittura in classe


<p>(1) Calcola: §§V0(10,100,0.1)§§ ÷ §§V1(2,10,1)§§</p> <p>(2) §§N0§§ ha §§V2(50,150,0.25)§§ € che vuole dividere equamente tra §§V3(2,5,1)§§ amici. Quanti euro riceverà ciascun amico?</p> <p>(3) §§Fm1§§ ha comprato §§V6(2,10,1)§§ barrette di cioccolato che pesano in totale §§V7(1,2,0.01)§§ kg. Quanto pesa una barretta?</p> <p>(4) In un laboratorio vengono utilizzati §§V8(5,20,0.5)§§ metri di listello di legno, suddivisi in §§V9(2,10,1)§§ parti uguali. Qual è la lunghezza di una parte?</p> <p>(5) Un bastone è lungo §§V14(3,12,0.2)§§ metri. Se lo tagliamo in §§V15(3,6,1)§§ parti uguali, qual è la lunghezza di ciascuna parte?</p> <p>(6) §§N3§§ ha raccolto §§V16(15,90,0.4)§§ kg di conchiglie e vuole distribuirle uniformemente in §§V17(3,9,1)§§ scatole. Quante conchiglie ci saranno in ogni scatola?</p> <p>(7) Se §§Fm4§§ nuota §§V18(1,4,0.1)§§ chilometri in §§V19(2,8,1)§§ giorni, quanti chilometri nuota in media al giorno? Può attraversare un fiume lungo §§( §§V16(15,90,0.4)§§/4 )§§ in §§( §§V19(2,8,1)§§ + 13 )§§ giorni?</p> <p>(8) Trova gli errori e correggili</p> <p>a) §§V20(0.1,1,0.1)§§ : §§V21(1,10,1)§§ = §§( §§V20(0.1,1,0.1)§§ / §§V21(1,10,1)§§ * 10 )§§</p> <p>b) §§V22(0.5,1,0.01)§§ : §§V23(1,10,1)§§ = §§( §§V22(0.5,1,0.01)§§ / §§V23(1,10,1)§§ * 0.1 )§§</p> <p>c) §§V24(10,20,1)§§ : §§V25(5,15,1)§§ = §§( §§V24(10,20,1)§§ / §§V25(5,15,1)§§ * 0.1 )§§</p> <p>d) §§V26(1,10,0.1)§§ : §§V27(1,10,1)§§ = §§( §§V26(1,10,0.1)§§ / §§V27(1,10,1)§§ * 10 )§§</p> <p>(9) I risultati sono stati scambiati – trova l'ordine corretto</p> <p>a) §§V28(0.01,1,0.01)§§ : §§V29(1,10,1)§§ = §§( §§V33(0.01,1,0.01)§§ / §§V36(10,100,1)§§ )§§</p> <p>b) §§V31(10,100,0.1)§§ : §§V32(2,10,1)§§ = §§( §§V28(0.01,1,0.01)§§ / §§V29(1,10,1)§§ )§§</p> <p>c) §§V34(10,15,0.1)§§ : §§V35(2,20,1)§§ = §§( §§V10(20,50,0.01)§§ / §§V11(2,20,1)§§ )§§</p> <p>d) §§V10(20,50,0.01)§§ : §§V11(2,20,1)§§ = §§( §§V31(10,100,0.1)§§ / §§V32(2,10,1)§§ )§§</p> <p>e) §§V33(0.01,1,0.01)§§ : §§V36(10,100,1)§§ = §§( §§V34(10,15,0.1)§§ / §§V35(2,20,1)§§ )§§</p> <p>(10) Calcola</p> <p> a) §§V37(1.0,10,0.1)§§ : §§V38(1,10,1)§§ &nbsp;&nbsp;&nbsp;&nbsp;b) §§V39(1.0,10,0.1)§§ : §§V40(1,10,1)§§ &nbsp;&nbsp;&nbsp;&nbsp;c) §§V41(1.0,10,0.1)§§ : §§V42(1,10,1)§§ &nbsp;&nbsp;&nbsp;&nbsp;d) §§V43(1.0,10,0.1)§§ : §§V44(1,10,1)§§ &nbsp;&nbsp;&nbsp;&nbsp;e) §§V45(10.0,20,0.1)§§ : §§V46(2,10,1)§§ &nbsp;&nbsp;&nbsp;&nbsp;f) §§V47(10.0,30,0.1)§§ : §§V48(2,20,1)§§ </p> <p>(11) Scrivi le seguenti frazioni come numeri decimali</p> <p> a) \(\frac{§§V49(1,10,1)§§}{§§V50(1,10,1)§§}\) &nbsp;&nbsp;&nbsp;&nbsp;b) \(\frac{§§V51(1,20,1)§§}{§§V52(1,10,1)§§}\) &nbsp;&nbsp;&nbsp;&nbsp;c) \(\frac{§§V53(1,20,1)§§}{§§V54(1,10,1)§§}\) &nbsp;&nbsp;&nbsp;&nbsp;d) \(\frac{§§V55(1,20,1)§§}{§§V56(1,30,1)§§}\) &nbsp;&nbsp;&nbsp;&nbsp;e) \(\frac{§§V13(4,40,4)§§}{§§V60(7,70,7)§§}\) &nbsp;&nbsp;&nbsp;&nbsp;f) \(\frac{§§V57(10,30,1)§§}{§§V58(2,10,1)§§}\) </p> <p>(12) Completa la tabella</p> <table class="table table-bordered text-center"> <thead class="table-danger"> <tr> <th>:</th> <th>2</th> <th>§§V75(3,5,1)§§</th> <th>§§(§§V75(6,10,2)§§*2)§§</th> <th>§§V77(30,60,10)§§</th> </tr> </thead> <tbody> <tr> <th>§§V78(10,30,0.2)§§</th> <td></td> <td>§§(§§V78(10,30,0.2)§§/§§V75(2,10,2)§§)§§</td> <td></td> </tr> <tr> <th>§§V79(30,50,0.2)§§</th> <td></td> <td></td> <td></td> </tr> <tr> <th>§§V81(12.3,50.6,0.3)§§</th> <td></td> <td></td> <td></td> </tr> <tr> <th>§§V80(50,70,0.2)§§</th> <td></td> <td></td> <td></td> </tr> <tr> <th>§§V82(150,170,0.2)§§</th> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>(13) §§Fm4§§ e §§M5§§ aiutano la loro insegnante a distribuire i materiali di consumo per il laboratorio di scienze. L'insegnante ha dato loro §§V4(10,20,0.2)§§ litri di vernice da suddividere equamente in §§V5(6,12,2)§§ contenitori uguali.</p> <table class='table table-sm'> <tr> <td class="align-top" style="width: 66%"> <p>§§Fm4§§ ha suggerito che ogni contenitore riceva §§V60(2,4,2)§§ litri, ma §§M5§§ non era d'accordo e ha detto che bisogna calcolare esattamente usando la divisione con numeri decimali.</p> <p>(a) Quanti litri di vernice vanno in ogni contenitore se si distribuiscono §§V4(10,20,0.2)§§ litri in modo uniforme?</p> <p>(b) Chi aveva ragione, §§Fm4§§ o §§M5§§? Spiega perché.</p> <p>(c) Quanta vernice riceverebbe ogni contenitore se la vernice venisse distribuita in §§V6(2,10,1)§§ parti uguali?</p> <p>(d) Se un contenitore ha ricevuto per errore §§V61(0.1,0.3,0.1)§§ litri in più, quanta vernice rimane per gli altri contenitori? <i>(Supponi che il resto della vernice debba essere distribuito equamente tra gli altri contenitori originali).</i></p> </td> <td class="align-top" style="width: 34%"> <img src="https://mathkiss.com/uploads/paint1.jpg" class="img-fluid" style="max-width: 220px;"> </td> </tr> </table>
An unhandled error has occurred. Reload 🗙