Rational Algebraic Expressions – Multiplication, Division, and Evaluation


<p>(1) Perform the multiplication of fractions:</p> <h4>\( \frac{a^2 b}{§§V1(2,10,1)§§c} \cdot \frac{§§V2(10,30,5)§§c^2}{§§V3(2,5,1)§§a^2 b^2} \)</h4> <h4>\( \frac{(§§V4(1,5,1)§§a + §§V5(1,5,1)§§c)^2}{§§V6(2,6,1)§§(3a - b)} \cdot \frac{§§V7(2,4,1)§§((§§V8(1,3,1)§§a)^2 - b^2)}{§§V9(5,15,1)§§a^2 - (§§V10(1,4,1)§§c)^2} \)</h4> <h4>\( \left(\frac{ab}{§§V11(2,6,1)§§b + §§V12(1,3,1)§§c}\right)^2 \cdot \frac{§§V13(2,5,1)§§c(2b + c)}{a^2 b^2} \)</h4> <p>(2) Perform the division of fractions:</p> <h4>\( \frac{§§V14(10,20,1)§§ab(c + d)}{§§V15(2,10,2)§§d^2} : \frac{§§V16(20,40,1)§§b(c + d)}{§§V17(2,4,1)§§ad} \)</h4> <h4>\( \frac{§§V18(5,15,1)§§a + §§V19(2,10,2)§§b}{bc^2 + c^3} : \frac{§§V20(25,81,4)§§a^2 - §§V21(16,49,4)§§b^2}{c(b + c)} \)</h4> <h4>\( \frac{§§V22(4,16,4)§§a^2 - y^2}{§§V23(2,6,2)§§a} : \frac{§§V24(1,3,1)§§a - y}{a + y} \)</h4> <p>(3) Calculate the value of the expression:</p> <table border="0" cellpadding="3" cellspacing="0" style="border-collapse: collapse;"> <tr> <td> <h4>\( \frac{(§§V25(2,4,1)§§x - §§V26(2,6,1)§§)^2}{x^2 - (§§V27(6,10,1)§§)^2} \cdot \frac{§§V28(6,9,1)§§x - §§V29(6,9,1)§§}{x^2 + §§V30(2,6,1)§§x} \cdot \frac{§§V31(8,12,2)§§x - §§V32(8,12,2)§§}{x^2 + §§V33(2,6,1)§§x} \)</h4> </td> <td> <h5> for \( x = §§V34(5,7,1)§§ \) </h5> </td> </tr> <tr> <td> <h4> \( \frac{(x - §§V35(10,15,1)§§)^2}{x^2 - (§§V36(13,15,1)§§)^2} \cdot \frac{§§V37(2,4,1)§§x + §§V38(1,3,1)§§}{x^2} \cdot \frac{§§V39(6,12,3)§§x + §§V40(2,6,2)§§}{x^2 + §§V41(10,15,1)§§x} \) </h4> </td> <td> <h5> for \( x = §§V42(1,4,1)§§ \) and \( §§V43(5,9,1)§§ \) </h5> </td> </tr> </table> <p>(4) Calculate the value of the expression:</p> <h4>\( \frac{§§V44(30,50,3)§§x^5 y^7}{z^{§§V45(6,8,1)§§} t^{§§V46(2,3,1)§§}} \cdot \frac{y^{§§V47(2,3,1)§§} z^{§§V48(5,6,1)§§}}{§§V49(10,20,1)§§x^2 t^{§§V50(6,9,1)§§}} \cdot \frac{§§V51(25,30,1)§§x^2 y}{zt} \), for \( x = §§V52(8,10,1)§§ \)</h4> <h4>\( \frac{§§V53(20,40,2)§§x^4 t^2}{z^{§§V54(4,6,1)§§} y^{§§V55(8,10,1)§§}} \cdot \frac{§§V56(10,20,1)§§y^3}{§§V57(10,20,1)§§x^2 t^{§§V58(6,8,1)§§}} \cdot \frac{§§V59(20,30,2)§§x^2 y^2}{z^{§§V60(4,5,1)§§} t^2} \), for \( z = §§V61(2,3,1)§§ \)</h4> <p>(5) Perform the calculation:</p> <h4>\( \frac{x^2 - §§V63(2,4,1)§§xy + y^2}{xy + x^2} \cdot \frac{x^2 + §§V64(2,4,1)§§xy + y^2}{x^2 - §§V65(1,2,1)§§xy} \)</h4> <p>(6) Express the expression as a fraction:</p> <table border="0" cellpadding="3" cellspacing="0" style="border-collapse: collapse;"> <tr> <td> <h4> \( \frac{(x + §§V66(1,4,1)§§)^2}{§§V67(2,4,1)§§x - §§V68(2,4,1)§§} \) : </h4> </td> <td> <h5> \( (x^2 + §§V69(4,8,2)§§x + §§V70(2,6,2)§§) \) </h5> </td> </tr> <tr> <td> <h4> \( \frac{(§§V71(2,4,1)§§a + §§V72(1,3,1)§§)^2}{§§V73(3,5,1)§§a - §§V74(1,3,1)§§} \) </h4> </td> <td> <h5> : \( (§§V75(6,12,3)§§a^2 + §§V76(8,16,4)§§a + §§V77(2,8,2)§§) \) </h5> </td> </tr> </table>
An unhandled error has occurred. Reload 🗙